

1. What is meant by "concentration" when we are talking about solutions? What is molarity? Which is more concentrated, 1 liter of an 0.500 M solution or 1 mL of an 0.500 M solution? Why? Malarity = # mal solution per liter & solution.

same molarity, so same concentration.

- Calculate the molarity of a solution which has a volume of 2.00 L and which contains 0.300 mol of dissolved solute. $M = \frac{N}{N}$ $M = \frac{0.300 \text{mol}}{2.001} = 0.150 M$
- Calculate the molarity of 3.59 L of a solution in which 0.250 mol of NaCl has been dissolved.

4. Calculate the molarity of 0.833 L of a solution in which 35.3 g of table sugar has been

dissolved. The formula for table sugar (sucrose) is
$$C_{12}H_{22}O_{11}$$
.

$$M = \frac{4402}{44} = \frac{0.103 \text{ mol}}{0.833 \text{ L}} = 0.124 \text{ M}$$

- 35.3g CoHo26x 1nd = 0.113 mo
- 5. A scientist needs 569 ml of an 0.250 M solution of barium chloride (BaCl₂).
 - How many moles of barium chloride should she use to make the solution?

a. How many moles of barium chloride should she use to make the solution?

$$M = \frac{N}{V}$$

$$0.250 = \frac{0.142 \text{ mol}}{0.569 \text{ L}}$$

$$0.142 = 0.142 \text{ mol}$$

$$0.250 = 0.142 \text{ mol}$$

$$0.250 = 0.142 \text{ mol}$$

A solution of magnesium nitrate (Mg(NO₃)₂) is needed for a lab experiment. The solution must have a concentration of 0.300 M. If the student who is making the solution has only 45.0 g of magnesium nitrate, what is the maximum volume of solution that the student can make? (If the student dissolves all of the Mg(NO₃)₂, how many liters of solution can

$$M = \frac{M}{V}$$

$$V = \frac{M}{M} = \frac{0.303 \text{ mol}}{0.300 \text{ mol}} = (1.01)$$